News
Article
Author(s):
Massachusetts Eye and Ear researchers came up with a mobile app called All_Aboard, designed to be used along with mainstream GPS systems and focuses on improving micro-navigation.
A team of researchers from Massachusetts Eye and Ear have developed a micro-navigation smartphone app to help those who are blind or visually impaired (BVI) in finding their bus stops, and a new study found the success rate of the app was substantially higher than that of Google Maps.1
According to a Massachusetts Eye and Ear news release,1 current GPS systems use macro-navigation for planning routes using public transportation. However, micro-navigation, such as finding the exact locations of bus stops and destinations, remains an issue for people who are BVI, as GPS-based localization for this is less accurate.
To head off this issue, researchers came up with a mobile app called All_Aboard, designed to be used along with mainstream GPS systems and focuses on improving micro-navigation. When a GPS indicates that a BVI user is nearing their destination, that is when All_Aboard should be opened. The app uses the phone’s camera to detect street signs from 30 to 50 feet away. It then uses auditory cues to direct the user toward their destination, with the frequency of the sounds changing as they approach the endpoint.
The app is powered by artificial intelligence, using a deep-learning neural network trained on about 10,000 images of bus stops collected in a given city or region. The app is currently capable of recognizing bus stops in 10 major cities/regions around the world.
In the study, 24 BVI individuals used All_Aboard along with Google Maps to navigate a set route with 10 bus stops at an urban (Boston) and suburban site (Newton, Massachusetts).
According to the news release, the results of the study were measured in terms of localization error and rate of successful localization. Localization error, or gap distance, is defined as the distance between the desired destination and map-marked endpoint. The rate of successful localization is the probability of getting close enough to the bus stops.
Moreover, the Mass Eye and Ear release noted researchers found that in both urban and suburban locations, All_Aboard had a success rate of 93 percent, whereas Google Maps had a 52 percent success rate. Additionally, the average gap distance with Google Maps was 6.62 meters and 1.54 meters with All_Aboard.1
GPS accuracy is supposed to be acceptable in suburban areas, according to Luo, who added it was not initially expected that the performance with Google Maps in Newton, Mass. would be so low. In previous research by Luo and his team, it was noted the problem may be due to widespread errors in bus stop location mapping data in Google Maps.3
Gang Luo, PhD, of the Schepens Eye Research Institute of Massachusetts Eye and Ear, noted the study demonstrates the capabilities of the app.
“Our findings suggest that the All_Aboard app could help travelers with visual impairments in navigation by accurately detecting the bus stop, and therefore greatly reducing their chance of missing buses due to standing too far from the bus stops,” Luo said in the news release. “This study indicates that computer vision-based object recognition capabilities can be used in a complementary way and provide added benefit to purely mapping-based, macro-navigation services in real-world settings.”
The authors declared no potential conflicts of interest with respect to the research. The All_Aboard app evaluated in this study is released to public for free. There is no revenue from app sale or in-app advertisements. The development of the app was funded in part by Microsoft AI4A award.